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The Pure Exploration Problem

• Given action/arm set X ✓ RD .
• At each round, the learner

• pulls arm x 2 X based on past observations;
• receives noisy feedback r(x) = h(x) + ⇠.

• Goal: identify an ✏-optimal arm bx , i.e.,

h(bx) � max
x

h(x)� ✏,

with probability at least 1� �.

• Performance measure: sample complexity.



Applications

Drug discovery Crowd-sourcing Simulation-based planning



Overview of Results

Classical settings:

• Standard MAB: no relations between h(x) and h(x 0).

• Linear bandits: h(x) = h✓?, xi with unknown ✓? 2 RD .

Our results:

• Study the high-dimensional linear bandit setting.

• Kernel bandits: h belongs to the RKHS H induced by the
kernel function K.1

• Neural bandits: learn a general non-linear h with a neural
network.

1Camilleri et al. 2021 also study pure exploration in kernel bandits.



A Motivating Example

sub-optimality gap 2 (✏, 3✏)

RD

✏-optimal

Example: A high-dimensional linear bandit problem, where each
circle/square represents an arm in RD .

Standard approach: sample complexity scales as ⌦(D/✏2).

Our insights:

• embed arms into R2;

• carefully deal with the induced misspecification;

• identify an ✏-optimal arm with eO(1/✏2) samples.



Key Ideas

The embedding: feature mapping  d : X ! Rd such that there
exists ✓d 2 Rd satisfying

max
x2X

|h(x)� h d(x), ✓di|  e�(d).

The working dimension: select the smallest embedding dimension
dk so that the induced misspecification is well-controlled.



The Algorithm

Algorithm 1 Algorithmic Framework

1: Set n = O(log(1/✏)).
2: for k = 1, 2, . . . , n do

3: Set dk be the smallest dimension so that the induced mis-
specification < O(2�k).

4: Eliminate arms (wrt  dk ) with sub-optimality gaps > O(2�k).
5: end for

Adaptive dimension selection: the embedding dimension dk is
allowed to change from round to round.



Theoretical Gaurantees

Theorem: Our algorithm identifies an ✏-optimal arm with
eO(deff(✏)/✏2) samples.

Kernel bandits:

deff(✏) = O(✏�2/(2��3)) with polynomial eigen-decay at rate
characterized by the constant �;

deff(✏) = O(log(1/✏)) with exponential eigen-decay.

Neural bandits:

deff(✏) = min
d

⇢X|X |

i=d+1
�i (H)  poly(✏)

�
,

where H is the Neural Tangent Kernel (NTK) matrix wrt X .



The Kernel Case

Recall: h 2 H where H is the RKHS induced by K.

Mercer’s Theorem and Corollary: Let {�i}
1
i=1 and {µi}

1
i=1 be

the sequence of eigenfunctions and eigenvalues associated with
kernel K. Any h 2 H can be written as h =

P1
i=1 ✓i�i for some

{✓i}1i=1 2 `2(N) such that
P1

i=1 ✓
2
i /µi < 1.

Feature mapping and approximation error: One can construct

 d(x) = [
p
µ1�1(x), . . . ,

p
µd�d(x)]

>
2 Rd

so that e�(d)  C
P

j>d
p
µj .



The Neural Case

Neural network approximation: Let f (x ;✓) denote a randomly
initialized neural network whose width m is large enough.
At each iteration:

• Train neural network wrt {(xi , yi )} and get b✓.
• Denote g(x ;✓) = r✓f (x ;✓), it can be shown that

h(x) ⇡ hg(x ; b✓),✓?i.

Feature mapping and approximation error: Construct

G = [g(x1; b✓)>; . . . ; g(x|X |; b✓)>]/
p
m.

Let U⌃V = G , we set the feature mapping as

 d(xi ) = [�1ui1, . . . ,�duid ]
>;

the approximation error can be characterized by tail singular values.



Empirical Performance
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Empirical evaluations: The box is drawn from the first quartile to the
third quartile; the mean sample complexity is marked as the black star.



Thank you!


