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Background: Parameter estimation

Goal: We aim to learn a mapping from observations of a multichannel

dynamical system, Z ∈ RT×d, to the underlying parameters φ ∈ Rk:

Z = H(φ) + η.

H is a physics-based computationally complex simulator with no

analytical expression;

We seek quantifiable uncertainty measures instead of point

estimates to cover the full range of possible outcomes.

η is some noise vector.

Real-world Application: In climate projection, H corresponds to the

climate models implemented with computationally demanding software

systems, and the goal is to learn parameterization schemes from global

observations and high-resolution simulations. Uncertainty quantification

is vital, as a small error in φ̂ might lead to a dramatic change in the fore-

casts of dynamics.

Baseline: Moments with physics-based simulators

Objective function: Schneider et al. [2] tries to find φ̂ by minimizing the

Mahalanobis distance:

Jmoment(φ; Z) := ‖m(Z) − m(H(φ))‖Σ[m(Z)].

m(·) is the time-average of a predefined moments function composed

of order statistics of different spatial channels of the dynamics.

Σ[m(Z)] is a diagonal matrix with the diagonals correspond to

temporal variance of the moments function.

Optimization method: Schneider et al. [2] proposes the use of Ensemble

Kalman Inversion (EnKI) [1] to address Jmoment(φ). With a specified prior

p(φ), the EnKI iteratively updates an ensemble of estimates and results

in an estimated posterior distribution.

Challenges:

1. Computationally expensive: Running H is required for each particle

at each iteration.

2. Requiring domain expertise: Defining m(·) requires knowledge of the

underlying physical system.

3. Requiring prior information: Bad priors might result in bad estimates.

Standard Emulator Approach: Learn Ĥθ

Instead of running costly numerical simulations H , learning a neural net-

work Ĥθ so that Z ≈ Ĥθ(φ).

• Require known m(·), must emulate high-dimensional statistics, and

very sensitive to initial conditions.

Our approach: EMBED & EMULATE

We seek to learn feature embeddings fθ of the dynamics jointly with an

emulator ĝθ that can replace high-cost simulators. Instead of using m(·) ,
ĝθ learns to emulate the map g := fθ ◦ H .

The EMBED & EMULATE framework

We design an “emulator” that fits well in the context of the parameter

estimation problem.

Figure 1. Contrastive learning schemes: Within each block, diagonals are dot products

between representations of “positive” pairs (Zi, Z̃i), (φi, φ̃i), and matched (Zi, φi).
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Figure 2. Components of our network and loss functions. Green blocks correspond to

contrastive losses, and the purple block corresponds to an added regression head

which is shown to be empirically useful.

Experiments

We tested on a coupled 396-dimensional Lorenz 96 system. Training data

is simulatedwith length T = 100 and dt = 0.1, resulting in Zi ∈ R396×1,000.
Each tested observation is with length T = 1, 000.
• Supervised regression baseline: We propose another baseline by

learning the direct mapping from Zi to φ̂i to provide only point esti-

mates.

• Neural Posterior Estimation (NPE-C): We compare against directly

estimating posterior p(φ|Z) using neural conditional density estima-

tion which can be unstable in high dimensions.

Setup: We use a Gaussian fixed prior pφ,fixed for the baseline EnKI w/o

learning. For Embed & Emulate, we adopt an empirical Bayes approach:

alter the mean of pφ,empB with the estimate from the regression head.

1st: Higher quality estimates with lower computation time.

(a) Parameter estimation errors for three methods

Figure 3. Averaged MAPE for varying training size. Embed & Emulate is able to

achieve a lower error than both the EnKI approach based on a fixed moment vector

objective and classical numerical solver [2] and a straightforward supervised regression

approach that is unable to produce uncertainty estimates.

EnKI w/ our approach Supervised Regression NPE-C EnKI w/o learning

Total 52.0 (0.87 h) 43.0 (0.72 h) 52.0 (0.87 h) 8,000 (5.5 d)

Table 1. Computation time for 500 training samples + 200 testing samples (including

time to generate training data, reported in minutes).

F ↓ h ↓ c ↓ b ↓

EnKI w/o Learning 0.910 0.019 2.443 0.393

EnKI w/ Embed & Emulate 0.615 0.073 1.561 0.720

Supervised Regression 0.707 0.104 1.785 0.917

NPE-C 0.844 0.106 2.117 0.853

Table 2. Continuous Ranked Probability Score (CRPS) evaluated on 200 test samples.

The errors of the uncertainty estimates are almost always lower for Embed & Emulate

than for an EnKI method using a classical numerical solver or for a supervised

regression baseline.

Experiments

2nd: Visualize uncertainty with noisy observations. The noise vector

η ∼ N (0, rΓ), where Γ is the temporal covariance of the trajectory Z,
and r is a scaling value.
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Figure 4. Impact of observation noise. Reconstructed posterior distributions,

comparing a classical numerical solver (Runge-Kutta) plugged into EnKI to minimize

Jmoment (left) with Embed & Emulate (right). Both variants of EnKI use the fixed prior

pφ,fixed and are run for 70 iterations with 100 particles. Results. Embed & Emulate

(right) produces posterior estimates that are consistent over a range of noise levels,

while the baseline using Jmoment is much more sensitive to variations in noise levels r.

3rd: Ablation study on the roles of regression head.

F ↓ h ↓ c ↓ b ↓

(a) No regression head (pφ,fixed) 16.75 (2.62) 6.02 (1.63) 22.16 (6.35) 6.60 (1.86)

(b) Embed & Emulate (pφ,fixed) 8.39 (1.12) 1.77 (0.82) 15.82 (1.61) 3.85 (0.91)

(c) Embed & Emulate (pφ,empB) 3.39 (1.03) 1.21 (0.76) 4.53 (1.52) 3.02 (0.90)

Table 3. Average MAPE (MdAPE, median absolute percentage error over 200 test

instances (n = 4,000). (a) fθ and ĝθ correspond to a generic emulator trained without

the regression loss `MAPE and the original prior pφ,fixed; (b) fθ and ĝθ correspond to the

emulator learned with our Embed & Emulate framework and the original prior pφ,fixed;
and (c) Embed & Emulate framework and the empirical Bayes prior pφ,empB. Results:
Having the regression component of the loss complement the contrastive losses yields

a substantial improvement in parameter estimation accuracy.

4th experiment: Visualize the objective function.

(a) Marginal heatmap of Jmoment(φ;Z?) using

Runge-Kutta
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(b) Marginal heatmap of ‖fθ(Z?) − ĝθ(φ)‖2.

Figure 5. Heatmap visualization showing values of objective functions. (a) the

marginal heatmap of predefined moments objective function Jmoment(φ; Z?); and (b) the

marginal heatmap of ‖fθ(Z?) − ĝθ(φ)‖2 with Embed & Emulate using learned emulator.

The red stars in both plots show the locations of the true parameters φ?, while the

black stars show the locations of the points with the minimum function value.
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